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Abstract Flood susceptibility in the Lower Connecticut River Valley Region attributable to nonclimatic
flood risk factors is mapped using a quantitative method using logistic regression. Flood risk factors
considered include elevation, slope, curvature (concave, convex, or flat), distance to water, land cover,
vegetative density, surficial materials, soil drainage, and impervious surface. Values of factors at point
locations were correlated to whether a location was located within or outside of the U.S. Federal Emergency
Management Agency 100-year Special Flood Hazard Area (SFHA). The Lower Connecticut River Valley
Region was divided into urban, rural, and coastal subregions to assess the differences in factor contributions
to flood susceptibility between different region types; for each region flood risk factors were extracted from
4,000 points, of which an equal number were within or outside of the 100-year SFHA. Logistic regression
coefficients were obtained. It was found that elevation and distance to water have the greatest contribution to
flood susceptibility in the urban and coastal subregions, whereas distance to water and surficial materials
dominate in the rural subregion. The contribution of land use to flood susceptibility increased by over 200%
between the rural and urban regions. Probabilities of flooding were computed using each regional logistic
regression equation. Several areas classified as very high risk (80–100%) and high risk (60–80%) were located
outside of the SFHA and included several types of infrastructure critical for human health, safety, and
education. This study demonstrates the utility of logistic regression as an efficient methodology to map
regional flood susceptibility.

Plain Language Summary Flooding is one of the most severe and potentially devastating
natural disasters that can occur. Floods can come in many forms, including river, coastal, and flash
flooding. Whenever and wherever any of these types of flooding occur, long-term planning and
adaptation, preparedness, and response time are all critical factors in reducing the overall impacts.
Awareness of areas that are currently prone and will remain prone to flooding in the future is essential to
consider in both short-term and long-term planning. Such awareness comes from an understanding of a
combination not only of regional climatic factors but also of nonclimate factors that relate to natural,
physical, and development characteristics. The current study estimates the risk of flooding throughout the
Lower Connecticut River Valley Region (LCRVR) based on site and regional characteristics not related to
climate. Several methods were considered to estimate flood risk; the method that was finally selected
for this study involves a statistical approach in which a data set having one or more independent
variables that produce a binary value of no or yes (0 or 1, respectively) for the dependent variable is
analyzed. The independent variables in this case include several nonclimate factors related to flood risk
that could potentially affect the region and for which sufficient data were available and are referred to as
flood risk factors. Flood risk factors considered include elevation, land slope, land curvature (concave,
convex, or flat), distance to water body, land cover, density of vegetation, surface geology, ability of the
soil to drain water, and the percent of impervious surface (e.g., pavement). The objective is to link each of
the flood risk factors to the dependent variables, which in this case is the occurrence of flooding for a
flood event that is estimated to occur on average once in every 100 years. It was found that the
overall quality of recent satellite images of the LCRVR during large flood events was not sufficient for
the current analysis; therefore, it was decided to use the U.S. Federal Emergency Management Agency
100-year Special Flood Hazard Area (SFHA) to indicate areas where flood inundation would occur. The
advantage of using the SFHA and the selected statistical modeling methodology is that they allow the
contribution of each flood risk factor within the SFHA to be estimated and then applied to the entire
study region to identify additional areas outside of the SFHA that have high flood risk. The LCRVR was
divided into three subregions (urban, rural, and coastal) to accentuate the differences in the contributions
of each flood risk factor to flood risk between an urban and a rural area and between inland and coastal
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Key Points:
• Elevation, distance to water, and

surficial materials had the highest
contributions to flood susceptibility
throughout the study area

• The contribution of elevation and
land use to flood susceptibility
increased substantially when
comparing the urban to the rural
subregion

• Very high and high susceptible areas
add over 6% of nonwater and
wetland area to the SFHA, including
8% more developed area
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areas; for each subregion 4,000 point locations were randomly chosen from which to extract data for
each flood risk factor. An equal number of these points were selected in locations that were within and
outside of the SFHA for each subregion. Site data for each flood risk factor were extracted and associated
with a 1 if the location was within the SFHA and a 0 otherwise. The resulting relations between each
flood risk factor and flood occurrence were analyzed so that regression coefficients could be estimated
for each factor, the magnitude of which indicates the relative strength of each flood risk factor’s
influence on flooding in a subregion. It was found that elevation and distance to water have the most
influence on flood risk in the urban and coastal subregions, whereas distance to water and surface
geology dominate in the rural subregion. The contribution of elevation and land use were also found to
increase the most between the rural and urban subregions. The coefficients for each subregion are
then used to assign probabilities of flooding to all locations over a grid covering that subregion. The
results for each subregion were combined to create an overall flood probability map of the LCRVR.
Probabilities were classified very low risk (0–20%), low risk (20–40%), medium risk (40–60%), high risk
(60–80%), and very high risk (80–100%). It was observed that several areas classified as very high risk and
high risk were located outside of the SFHA. Several types of infrastructure critical for human health,
safety, and education were finally overlaid on the flood risk map to identify those assets that are most
vulnerable to the 100-year flood and may therefore require additional flood risk mitigation.

1. Introduction

Flooding is one of the most severe and potentially devastating natural disasters. Flooding occurs in many
forms, including river, coastal, and flash flooding, and arises from a variety of processes such as snow melt,
severe precipitation events, storm surge, and on amore long-term scale, sea level rise. Whenever any of these
types of flooding occur, long-term planning and adaptation, preparedness, and response time are all critical
factors in reducing the overall impacts. The severity of flooding has increased over the last several decades in
the northeast and throughout the Mississippi and Ohio River valleys (Peterson et al., 2013) because of a com-
bination of factors related to the development of urban areas along rivers and coasts and potentially climate
change, which have contributed to the total cost of flood damage escalating as well (Doocy et al., 2013).
Awareness of areas that will be more prone to flooding because of these changes is essential to consider
in long-term planning, whereas it can also inform short-term strategies, such as the development of early
warning mechanisms (Li et al., 2018; Lopez et al., 2017; Rahman et al., 2013). Such awareness comes from
an understanding of a combination not only of climatic factors impacting the region but also of nonclimate
factors (e.g., urbanization) that relate to regional and site characteristics as well (Mahmoud & Gan, 2018; Miller
& Hutchins, 2017; Zhu et al., 2007).

Various types of hydrological models can be used to model flood susceptibility (Devi et al., 2015) and can be
categorized as physically based (Abbott et al., 1986; Gassman et al., 2007), conceptual (Crawford & Linsley,
1966), or data-driven (Gogoi & Chetia, 2011; Kia et al., 2012; Lee et al., 2012; Matori et al., 2014; Siddayao
et al., 2014; Ullah & Choudhury, 2013) models. Physically based models rely on an understanding of complex
physical processes and represent a mathematically idealized form of the real thing. These models use vari-
ables that are functions of both space and time and are measurable. Finite difference equations are used
to model the hydrological processes associated with the movement of water. Even though physically based
models do not require a large amount of hydrological andmeteorological data for calibration, a large number
of parameters are required to describe the physical characteristics of the catchment being modeled, includ-
ing soil moisture, water depth, topography, and river network dimensions. Physically based models are ver-
satile and have the advantage of using parameters that have a physical interpretation, but much time and
resources are required to develop such models. There are a myriad of examples of physically based models,
two of which include the Soil and Water Assessment Tool (Gassman et al., 2007) and the MIKE Systeme
Hydrologique European model (Abbott et al., 1986).

Conceptual models are similar to physically based models in that they attempt to describe all of the compo-
nent hydrological processes, albeit in a more simplified and less physical process manner. They are com-
posed of interconnected reservoirs that are recharged by sources such as infiltration, percolation, and
rainfall and emptied by runoff, evaporation, and drainage, and other types of sinks. The parameters that make
up a conceptual model are assessed by analysis of field data and calibration. Unlike physically based model,
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conceptual models require an extensive amount of meteorological and hydrological data for calibration, in
addition to sophisticated analysis tools, which is not within the scope of the current project. One of the first
conceptual models developed was the Stanford Watershed Model IV by Crawford and Linsley (1966).

In contrast to physically based and conceptual models, data-driven or empirical models rely completely on
observations and an understanding of the hydrological and meteorological variables and regional character-
istics that influence flood susceptibility with no consideration given to the physics of meteorological or
hydrological processes. Many types of data-driven models use linguistic variables whose values include
words or phrases, rather than the conventional numerical variables used in the models described above.
Examples of linguistic data-driven models used for hydrological modeling purposes include (1) fuzzy logic
(FL; Gogoi & Chetia, 2011; Hundecha et al., 2001; Sen & Altunkaynak, 2004), (2) artificial neural networks
(ANN; Dawson & Wilby, 2001; Kia et al., 2012; Kovacevic et al., 2018), (3) Adaptive Neuro-Fuzzy Interface
System (ANFIS; Ullah & Choudhury, 2013; Yaseen et al., 2018; Zounemat-Kermani & Teshnehlab, 2008), and
(4) analytical hierarchy process (AHP; Matori et al., 2014; Richardson & Amankwatia, 2018; Siddayao
et al., 2014).

The objective in most data-driven models is to produce a list of relative weights for whatever variables and
local characteristics have been identified as affecting flood susceptibility; these weights can then be used
to produce a flood susceptibility map. The method used to derive these weights represents the major differ-
ence between the various forms of data-driven models.

The first type of linguistic data-driven model is FL and is set up using membership functions and rules for fac-
tors related to flood susceptibility, hereafter referred to as flood risk factors. A membership function for each
factor incorporates various classifications (e.g., high, medium, and low) of that factor. After the variables are
partitioned into their different fuzzy classes, an IF … THEN type of rule is set up to establish the response of
any combination of these fuzzy classes. For example, Gogoi and Chetia (2011) used a fuzzy rule-based model
to forecast runoff in the Jiadhal Basin in Northeast India. The authors used three flood risk factors (total
monthly rainfall, mean monthly temperature, and previous month’s discharge) and three categories (e.g.,
high, medium, and low) to describe projected runoff, resulting in a total number of 33 = 27 rules. Sets of
values for each variable were then tested against these rules to identify rules that are fulfilled to a point that
exceeds a certain threshold value. The identified rules are then used to project runoff based on values of the
identified flood risk factors.

The second type of data-driven model is the ANN. ANNs consist of layers of nodes or neurons, which include
an input layer (number of neurons equals the number of flood causative factors), an output layer (number of
neurons equals the number of types of desired outputs), and one or more hidden layers where algorithms are
used to model the complex relations that are expected to exist between each flood risk factor and the influ-
ence that they have on the output. In the context of flooding, outputs would be water levels and/or flow. Kia
et al. (2012) used ANN to predict water levels and flood inundation using seven potential flood risk factors:
rainfall, slope, elevation, flow accumulation, soil, land use/cover, and geology.

Alternatively, the third linguistic model type is the ANFIS, which uses a combination of the numeric power of
neural networks and the verbal power of FL. Such a model contains features of both types of models such as
learning and optimization abilities and IF… THEN rule thinking to map an input space to an output space. An
example of this method was developed for the Barak River basin in Northeast India by Ullah and Choudhury
(2013). Issues with using an ANN, ANFIS, or any other method that incorporates neural networks relate to their
complexity and the substantial computing power that is required to run the networks. The quality of the
resulting predictions in many cases has also been found to be inferior to other model types (Shortridge
et al., 2016) and especially so when the data that are used to validate the model contain values outside of
the range of data used to train the model.

The final type of linguistic data-driven model is the AHP. An AHP identifies potential flood risk factors, and
their associated weights using expert opinions combined with geographical, statistical, and historical data.
For example, Matori et al. (2014) and Siddayao et al. (2014) used an AHP in performing spatial assessments
of flood susceptibility in northern Malaysia and the northern Philippines, respectively. Flood risk factors
included rainfall, geology, soil type, land use, population density, distance from river bank, and site elevation
and slope. The authors in both studies consulted with experts in their study areas and used the survey results
to develop weights for each factor. They then combined the resulting weights with a Geographical
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Information System to produce a color-coded map representing various levels of risk for each respective
study region. The advantage of this method is that the final product is a flood susceptibility map based on
the combined experience of several years of flooding events from various type of experts who are familiar
with the region. The disadvantage is that the results can be based on subjective and conflicting opinions,
especially when there are many flood risk factors being considered. This can be mitigated, however, when
using the overall factor weighting mechanisms that are typically used in an AHP.

In contrast to the linguistic models, statistically based data-driven models use mathematical equations that
are derived from concurrent input and output data (e.g., unit hydrograph). Regression and correlationmodels
are two examples that attempt to find the functional relationship between the input and output time series.
Other more quantitative types of data-driven models include multivariate statistical analysis (Allaire et al.,
2015; Sharma et al., 2015; Singh et al., 2009; Wallis, 1965) and multivariate logistic regression (MLR; Park
et al., 2017; Pradhan & Lee, 2010; Tehrany et al., 2014), or some combination of these. These methods rely
on numerical expressions that characterize the relationships between the independent flood risk factors
and flood inundation (Lee et al., 2012). The use of multivariate statistical analysis typically requires several
strict assumptions to bemade prior to the analysis and requires the relation between flooding and each flood
risk factor to be considered independently from any potential relations between factors to develop weights
for each factor. MLR can be used to solve this issue by examining the relations between a dependent variable
(e.g., whether a location is flooded or not flooded) and any number of independent variables (e.g., flood risk
factors; Pradhan & Lee, 2010). An advantage of MLR is that a separate analysis is not required to estimate the
weight of each flood risk factor as this functionality is already built into such coding environments as R (R
Development Core Team, 2018). Another advantage of MLR is that the variables can be continuous and/or
categorical and is straightforward to implement.

Though somewhat ad hoc, after considering all of the advantages and disadvantages of the threemajor types
of models described above (physically based, conceptual, and data driven) and due to the fact that one of the
major objectives of the current study was to develop an accurate flood susceptibility mapping methodology
that requires little resources in terms of time andmoney and can be applied not only to the study region used
in the current study but also on a larger scale, it was decided to use a data-driven model of the Lower
Connecticut River for the current project. In addition, it was decided to use MLR over the other types of
data-driven models because of the fact that sufficient data were already available for a number of potential
flood risk factors throughout the Lower Connecticut River; therefore, a quantitative relationship between
these risk factors and flood inundation, which would provide more accuracy than the linguistic models,
would be possible without expending significant additional resources in obtaining the required data. For
these reasons, MLR was selected to model flood susceptibility for the current study.

2. Data and Methods

The Lower Connecticut River Valley Region (LCRVR) is located in the southeastern central part of the state of
Connecticut and is focused around the confluence of the Connecticut River and Long Island Sound (Figure 1).
Whereas the Connecticut River is tidally influenced throughout the study region, there are many smaller riv-
ers and tributaries where the flood threat is primarily driven by local fluvial flooding. This region is also extre-
mely heterogeneous in terms of the various land characteristics that can influence flood susceptibility. For
these reasons, and the fact that the state of Connecticut hosts a large and relatively complete database of
land and water characteristics throughout the state, the LCRVR was selected as the study region for the
current study.

Even though the methodology used to develop the flood susceptibility map of the LCRVR is based on the
method used in Tehrany et al. (2014), there are features of this work that differentiate it from previous
studies. These studies, for example, all took place outside of the United States and involved land areas
substantially smaller than the LCRVR. Because of the small size of each study region, these studies
assumed that the study regions were homogeneous in terms of the influence of various regional charac-
teristics on flood susceptibility. In contrast, the LCRVR is the first region within the United States for which
the methodology described here has been used and is sufficiently large spatially that the assumption of
homogeneity across the study area is less valid than it was in the international studies. The current study,
therefore, includes different types of subregions (e.g., coastal, rural, and urban) for which separate flood
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susceptibility analyses are performed and between which comparisons can be made on the influence of
subregional characteristics (e.g., land use).

2.1. Flood Risk Factors

There are several types of nonclimatic data that are required as independent variables when using MLR to
estimate flood susceptibility; these independent data represent parameters that may contribute to flooding
in a region and are referred to as flood risk factors. Flood risk factors that are used for flood susceptibility map-
ping should be measurable and collected throughout the entire study region but should not represent infor-
mation that is spatially uniform. Several risk factors may be prominent in one region but not in another; for
example, the influence of flood factors will vary when comparing inland versus coastal regions or rural versus
urban regions. In general, there is no agreement on which flood risk factors are the standard for any flood
susceptibility analysis; however, there are factors that are more prominently used than others. Some of the
most common factors are listed in Table 1 along with the citations for a few of the studies in which they were
identified as influential. A subset of these flood risk factors was chosen for the present study after considering
the availability, period of record, and completeness of each data set as applied to the study region: elevation,
slope, land curvature, land cover, distance to water body, vegetation density, percent impervious surface, soil
drainage class, and surficial materials. Several of these flood risk factors are related to each other so that some
correlation is to be expected. Such correlation is common when a study is performed using MLR because the
final objective is to develop a logistic regression that includes all factors that are expected to contribute to
flooding and for which sufficient data are available. A potential issue occurs if detailed comparisons are made
between the contributions of each flood risk factor; any correlation needs to be teased out if such compar-
isons are going to bemade. Because the main objective of the current study is to provide a logistic regression
equation that can be applied to the entire region, in addition to making some simple comparisons or obser-
vations related to each flood risk factor’s contribution, no attempt was made to estimate these
potential correlations.

Sources of flood risk factors for the LCRVR include the U.S. Geological Survey (USGS), the Connecticut
Department of Energy and Environmental Protection (DEEP), the U.S. Department of Agriculture-National
Resources Conservation Service, and the Federal Emergency Management Agency (FEMA). Abbreviations,
sources, and the resolution/scale of each data set are given in Table 2.

All flood risk factor data were collected over the entire study region and compiled into spatial databases
using the ArcGIS 10.2 software (Environmental Systems Research Institute, 2014). Flood risk factors slope
and curvature were derived from the elevation data set, whereas the distance to water risk factor was com-
puted as the minimum distance as the crow flies between each cell and the nearest water body as

Figure 1. Map showing the location of the Lower Connecticut River Valley Region and the area of influence (shaded blue)
within the state of Connecticut.
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depicted on the USGS 7.5-min topographic quadrangle maps for the state of Connecticut (DEEP, 2005). All
data sets were resampled using linear interpolation to a 30-m × 30-m grid comprised of 2,142 columns
(north and south) and 1,957 rows (east and west) for a total of roughly 4.2 million points.

Prior to using each data set in the flood susceptibility analysis, each numerical flood risk factor was divided
into classes. This is accomplished using the quantile method (Papadopoulou-Vrynioti et al., 2013; Tehrany
et al., 2014; Umar et al., 2014), which partitions each numerical data set (e.g., elevation [0.0–277.5 m], slope
[0.0–120.7°], vegetation density [0.0–93.0%], distance to water body [0.0–2,352.7 m], and percent impervious
service [0.0–96.1%]) into classes containing the same number of features or pixels per class; partitioning the
data in this manner ensures that data are included and that a regression coefficient can be determined for
each flood risk factor class. For the purposes of this study, each of the numerical flood risk factor data sets

Table 1
Flood Risk Factors and Examples of Studies in Which Each Has Been Considered

Flood risk factors Literature

Temperature Gogoi and Chetia (2011)
Previous month’s discharge Gogoi and Chetia (2011)
Population density Siddayao et al. (2014), Sinha et al. (2008), and Zhang et al. (2005)
Distance from riverbank Siddayao et al. (2014)
Landform: slope/elevation/curvature Matori et al. (2014), Siddayao et al. (2014), Tehrany et al. (2014), Lawal et al.

(2012), Saini and Kaushik (2012), Sinha et al. (2008), and Zhang et al. (2005)
Distance from access road Qureshi and Harrison (2003)
Land-use zoning Lawal et al. (2012) and Qureshi and Harrison (2003)
Drainage density Lawal et al. (2012) and Saini and Kaushik (2012)
Proximity to drainage Sinha et al. (2008)
Soil type/drainage Matori et al. (2014), Tehrany et al. (2014), Lawal et al. (2012), Saini and Kaushik

(2012), and Yahaya et al. (2010)
Distance from urban areas Qureshi and Harrison (2003)
Precipitation/rainfall Matori et al. (2014), Tehrany et al. (2014), Lawal et al. (2012), Gogoi and Chetia

(2011), Yahaya et al. (2010), Zhang et al. (2005), and Qureshi and Harrison (2003)
Land cover/use and vegetation Matori et al. (2014), Tehrany et al. (2014), Saini and Kaushik (2012), and Yahaya

et al. (2010)
Geology Matori et al. (2014) and Tehrany et al. (2014)
Timber type/size/density Tehrany et al. (2014)

Table 2
Flood Risk Factors and Flood Event Data With Data Source and Resolution/Scale

Flood risk factors
Source
(year)

Resolution/
scale URL for data access

Land cover (LAND) USGS
(2011)

30 m https://www.mrlc.gov/

Elevation (ELEV); slope (SLOPE);
curvature (CURV)

USGS
(2014)

30 m https://earthexplorer.usgs.gov/

Distance from water (DIST) DEEP (2005) 1:24,000 https://www.ct.gov/deep/cwp/view.asp?
a=2698&q=322898&deepNav_GID=1707

Soil drainage (SOIL) USDA-NRCS
(2017)

varies https://sdmdataaccess.nrcs.usda.gov/

Vegetation density (VEG) USGS
(2011)

30 m https://www.mrlc.gov/

Impervious surface (IMP) USGS
(2011)

30 m https://www.mrlc.gov/

Surficial materials (GEO) DEEP (2005) 1:24,000 https://www.ct.gov/deep/cwp/view.asp?
a=2698&q=322898&deepNav_GID=1707

FEMA 100-year NFHL FEMA
(2016)

1:12,000 https://fema.maps.arcgis.com/home/index.html

Note. USGS = U.S. Geological Survey; DEEP = Connecticut Department of Energy and Environmental Protection; USDA-
NRCS = U.S. Department of Agriculture-National Resources Conservation Service; FEMA = Federal Emergency
Management Agency; NFHL = National Flood Hazard Layer.
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was divided into 10 categories using the classifications given in Table 3; examples of the spatial distribution of
two numerical flood risk factors are shown in Figures 2a and 2b for elevation and distance to water, respec-
tively. Regarding the other flood risk factor data sets, land curvature was divided into three classes of concav-
ity (not shown); land cover was divided into 10 classes (Figure 2c); soil drainage was divided into eight classes
(not shown); and surficial materials was divided into 10 classes (Figure 2d).

2.2. Flood Inundation

The overall objective is to develop relations between flooding and all dependent flood risk factors. Therefore,
a method is required to compare the values of each factor at a point with whether flooding would be
expected or not expected to occur at that point for a specific flood (annual) return period. Because of the

Table 3
Regression Coefficients for Each Risk Factor Class

Factor Class Logistic coefficient (C/R/U) Factor Class Logistic coefficient (C/R/U)

a0 — 5.18/5.06/20.24 DIST (m) 0.00–39.21 —/—/—
ELEV (m) �2.65–2.84 —/—/— 39.22–117.64 �1.19/�2.16/�1.60

2.85–20.42 �4.11/�2.17/�14.87 117.65–196.06 �2.01/�3.32/�2.64
20.43–40.19 �20.48/�1.71/�15.70 196.07–274.48 �2.89/�3.63/�2.59
40.20–56.67 �18.79/�1.59/�16.27 274.49–392.12 �3.00/�3.99/�3.20
56.68–75.35 —/�1.40/�16.41 392.13–509.75 �4.63/�4.75/�3.57
75.36–92.93 —/�1.54/�16.60 509.76–627.39 �4.45/�5.03/�3.87
92.94–109.40 —/�2.22/�17.26 627.40–784.24 �5.61/�4.89/�4.07
109.41–128.08 —/�2.53/�18.24 784.25–1,019.51 �19.61/�4.60/�3.91
128.09–152.25 —/�2.84/�17.52 1,019.52–2,352.71 �17.33/�3.92/�2.68
152.26–277.50 —/�3.72/�18.00 SOIL not rated —/—/—

CURV Convex (�6.05 – �0.66) —/—/— excessively drained �0.28/0.16/�2.24
Flat (�0.65–0.65) 0.22/0.07/�0.46 somewhat excessively �0.19/�0.53/�1.57

Concave (0.66–6.05) �0.89/1.79/0.99 well drained �0.18/0.05/�1.43
SLOPE 0.00–0.47 —/—/— moderately well 0.03/0.70/�1.33

0.48–1.89 �0.29/�0.08/�0.10 somewhat poorly —/2.52/0.30
1.90–3.31 �0.11/�0.01/�0.41 poorly drained 1.02/1.48/�0.65
3.32–4.73 �0.40/�0.62/�0.85 very poorly drained 0.60/1.02/0.68
4.74–6.62 �0.97/�0.57/�1.06 IMP (%) 0.00–0.00 —/—/—
6.63–8.52 �1.25/�0.92/�1.42 0.01–1.96 �0.89/�1.51/�0.27
8.53–10.88 �0.79/�0.82/�1.37 1.97–4.70 0.02/�0.21/�0.20
10.89–14.20 �0.88/�1.39/�2.65 4.71–10.98 �0.19/�0.27/�0.32
14.21–19.40 �1.29/�1.14/�2.17 10.99–18.82 �0.28/�1.14/�0.34
19.41–120.72 �0.70/�2.02/�2.40 18.83–28.62 �0.34/�0.44/�0.03

VEG (%) 0.00–0.00 —/—/— 28.63–38.82 �0.21/�0.23/�0.39
0.01–32.00 �0.20/0.20/0.12 38.83–49.80 0.06/�0.07/�0.57
32.01–55.00 �0.11/0.29/0.37 49.81–63.92 0.16/�1.32/�1.22
55.01–70.00 �0.42/�0.34/0.41 63.93–99.61 �0.42/�0.31/�0.71
70.01–80.00 0.00/0.35/0.32 GEO thin till —/—/—
80.01–86.00 �0.57/0.15/0.77 sand/gravel/talus 0.90/0.89/0.82
86.01–88.00 �1.07/0.67/0.86 fines —/1.77/1.05
88.01–89.00 �1.04/0.42/0.83 floodplain alluvium 16.31/3.11/2.91
89.01–90.00 �1.26/�0.27/0.33 swamp deposits 0.08/1.37/1.41
90.01–93.00 �1.93/�0.31/�0.18 thick till �0.58/�2.03/�0.73

LAND developed, open space —/—/— End Moraine deposits 0.08/�1.81/—
dev., low intensity �0.08/�0.04/�0.23 artificial fill 17.30/14.71/2.07

dev., med.-high intensity �0.34/0.04/�0.34 salt/tidal marsh deposits 1.18/13.38/—
barren (rock/sand/clay) 0.94/�1.16/�16.55 beach deposits 2.39/—/—

forest 0.00/�0.65/�0.95
shrub/scrub �1.89/�1.77/�1.03

grassland/herbaceous �0.20/�0.86/�0.69
pasture/hay �0.10/�1.24/�0.38

cultivated crops 1.22/�0.47/�0.93
wetlands (woody/emer.) 0.05/0.35/�0.03

Note. C = coastal; R = rural; U = urban.
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fact that there has not been a flood event in the region greater in magnitude than a 1 in 25-year discharge for
which USGS/National Aeronautics and Space Administration Landsat satellite images of sufficient quality are
available, in addition to noting that the flood inundation delineation for all recent, but minor, flood events
falls almost entirely within the boundary of the FEMA 100-year Special Flood Hazard Area (SFHA), it was
decided to compare flood risk factors to flood inundation as defined by the FEMA 100-year SFHA (Federal
Emergency Management Agency, 2016) for the region (Figure 3) to initially train the statistical model.
Flood inundation data from the SFHA were compiled into a spatial database and resampled to a 30-
m × 30-m grid identical to those used for the flood risk factors.

It should be noted that the SFHA has received much scrutiny because of its past dependence on one-
dimensional hydraulic models and low-resolution elevation data. For example, Blessing et al. (2017) found
that the SFHA missed near 75% of flood claims made by those affected within several municipalities of
the southeastern suburbs of Houston, Texas, during five major flood events between the years 1999
and 2009, although the version of the SFHA used in Blessing et al. (2017) would have been updated

Figure 2. Spatial distribution of flood risk factors: (a) elevation (ELEV), (b) distance to water (DIST), (c) land cover (LAND),
and (d) surficial materials (GEO).
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prior to 1999 and would have employed lower-quality hydrologic and
hydraulic models and lower-resolution elevation data than is currently
used. In addition, the SFHA only takes into account riverine and coastal
flooding, while many coastal events such as Hurricane Harvey are domi-
nated by pluvial flooding. It should be noted that one limitation of the
SFHA is that where there are combined effects of riverine and coastal
flooding, the modeling that is used to develop the SFHA treats them
as independent drivers, which may result in an inappropriate character-
ization of flood risk in some areas (Moftakhari et al., 2017). In another
study where a high-resolution hydrodynamic model was developed for
the entire conterminous United States using the well-accepted Height
Above Nearest Drainage methodologies (Wing et al., 2017), it was found
that the model matched up to 86% of the extent of the most current
version of the SFHA, which employs higher-quality one-dimensional
and two-dimensional hydraulic modeling tools and higher-resolution
elevation data (down to 1 m) from the USGS National Elevation
Dataset. Because of the improved performance of the SFHA in capturing
areas that would be potentially impacted by a 100-year flood event and
the fact that the SFHA is the only resource currently available within the
LCRVR that provides an estimate of spatial flood inundation from an
extreme flood event, the SFHA was assumed to provide a sufficiently
accurate depiction of 100-year spatial flood inundation due to riverine
and coastal events within the study region.

2.3. Logistic Regression

Logistic regression was implemented to develop a specific formula that
measures the probability of flood inundation throughout the LCRVR dur-
ing the 100-year flood event as defined in Figure 3. This is accomplished

by designating several points throughout the LCRVR as testing points from which the logistic regression
will be derived. Because of the large size of the LCRVR and in order to reduce the bias caused by one
portion of the region on another part of the region, this was accomplished by first dividing the LCRVR
into three separate subregions that represent urban, rural, and coastal environments (Figure 4). These
subregions were selected based on land cover characteristics, particularly level of development, as
depicted in Figure 2c; the relatively urban area of Middletown, CT, is observed in the northwest portion

Figure 3. The 100-year Federal Emergency Management Agency SFHA
within the Lower Connecticut River Valley Region. Light blue represents
open water, whereas dark blue represents land areas within the SFHA.

Figure 4. Map of the Lower Connecticut River Valley Region along with a zoomed-in area showing the distribution of sam-
pling points used to train the logistic model. Green points represent locations where flooding did not occur, while red
points represent locations where flooding did occur. Areas shaded in blue, green, and red, represent urban (U; blue), rural
(R; green), and coastal (C; red) subregions, respectively.
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of the region, while development can also be seen along the coast in the southern portion of the region;
the remainder of the region is predominantly rural. A total of 4,000 points was randomly chosen from
each subregion with the stipulation that an equal number of those points (2,000 per subregion) were
within (green dots in Figure 4) or outside (red dots in Figure 4) of the FEMA 100-year SFHA. A total of
12,000 points, therefore, was chosen from which to extract flood inundation and flood risk factor data.

Flood data for all points consisted of either a 0 or a 1 to represent whether a location was not flooded or
flooded, respectively; these values represented the dependent variable (L) in the logistic regression:

ln
p

1� p

� �
¼ L ¼ a0 þ a1x1 þ a2x2 þ…þ anxn; (1)

where p is the probability of flooding. All flood risk factor data at each location were categorized into
classes according to the class ranges designated in Table 3 and represented the independent variables
(x1 to xn; n = 9) in equation (1). In some cases, the land cover, soil class, and/or surficial materials risk
factors were classified as open water and/or the distance to water was equal to 0 even though the loca-
tion was located outside of any particular body of water. This apparent artifact is attributable due to
differences in the resolution of each data set, which can cause a slight shift in the boundaries of water
bodies when the data sets are processed (snapped and clipped) within ArcGIS. The result is that
extracted values from some layers will occur over open water, while extracted values from other layers
will occur over the land that is adjacent to the same body of water. These points were justifiably elimi-
nated from the analysis, which resulted in the total number of points being utilized in the urban, rural,
and coastal subregional data sets, respectively, to be 3,815; 3,708; and 3,776. The independent and
dependent variables were then analyzed using the function glm(…, family = binomial) in R to deter-
mine the regression intercept (a0) and the coefficients (a1 to an; n = 9) for each flood risk factor in
equation (1).

The final step in the development of the logistic model for flood susceptibility is to estimate the mod-
el’s goodness of fit. One common method that works well for binary data is the Hosmer-Lemeshow
(H-L) goodness of fit test (Hosmer et al., 2013). The H-L test computes a test statistic that compares
the predicted values of the model with observations and that approximately follows a chi-square distri-
bution. The resulting p value is then computed as the right-hand tail probability of the distribution. A
low p value (<0.05) suggests that the model fit is poor, while a high p value suggests that the null
hypothesis that there is no relation between flooding and the flood risk factors can be rejected.
Refer to Hosmer et al. (2013) for more details on the H-L test. The H-L test was implemented in R using
the hoslem.test function.

After the coefficients of the logistic regressions are determined for each flood risk factor class, the probability
of flooding at each grid cell is calculated from the first two members of equation (1) using the following
equation:

p ¼ eL
.

1þeLð Þ
; (2)

which is used to create the final flood risk map. It should be noted that all flood risk factors are used but that
for each flood risk factor only one coefficient is used that corresponds to the appropriate factor class (see
Table 3) at each map grid cell.

2.4. Critical Infrastructure

The final step in the development of the flood susceptibility map involves identifying locations with vulner-
able critical infrastructure, which included the following:

- dams;
- military compounds;
- airports;
- hospitals and other health-related facilities;
- fire and police stations;
- emergency operations centers;
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- private and public K–12 schools;
- town halls;
- major routes;
- bridges; and
- railroads.

Data sets and sources related to critical infrastructure throughout the LCRVR and that were used in the cur-
rent study are given in Table 4. All critical infrastructure data sets were clipped to the boundaries of the LCRVR
and overlaid onto the final flood susceptibility map.

3. Results
3.1. Flood Risk

The coefficients from the logistic regression are listed in Table 3 for each class of each flood risk factor over
the three subregions; the greater the magnitude of the coefficient, the stronger the impact of that risk factor
class on flood inundation in the LCRVR. The p values computed for the logistic models in the coastal, rural,
and urban subregions using the H-L test were approximately 0.76, < 0.01, and 0.60. Because of their high
p values, there is no evidence of poor fit within the coastal and urban subregions, which are the two areas
of highest concern in the LCRVR due to their relatively high population densities. The fit is much less reliable
for the more sparsely populated rural subregion. The low p value indicates that the rural subregion is suffi-
ciently large so that there is substantial variation in the relationship of each flood risk factor to flood inunda-
tion throughout its area.

In order to make a simple comparison of the results between subregions, especially due to the high
variation in the relationships of the flood risk factors to flood inundation in the rural subregion, the
regression coefficients for all flood risk factors were averaged for each subregion, the results of which
are shown in Figure 5a. There are initially three flood risk factors that stand out as having a dominant
correlation with flood susceptibility throughout the LCRVR: elevation (ELEV), distance to water (DIST),
and surficial materials (GEO). Elevation has the most influence on flood susceptibility in the urban
and coastal subregions because of the fact that both subregions are dominated by lower elevations,
whereas elevation has less influence within the rural subregion where substantially higher elevations
dominate. Distance to water has a large influence on flood susceptibility in all subregions because
of the number of water bodies located throughout the LCRVR, which include a myriad of small lakes,
ponds, and tributaries, in addition to the Connecticut River and Long Island Sound. Surficial materials
has greater influence on flood susceptibility in the rural subregion and coastal subregions where much

Table 4
Critical Infrastructure Data Sets Used in the Current Study With Data Source and URL

Infrastructure Source (year) URL for data access

Airports DEEP (2005) https://www.ct.gov/deep
Bridges National Bridge Inventory ( Federal

Highway Administration, 2016)
https://www.arcgis.com/home/item.html?id=
775f08232eb1424189a4e8091edf893e

Dams DEEP (1996) https://www.ct.gov/deep
EOCs RiverCOG (2017) https://www.rivercog.org
Fire and police stations RiverCOG (2017) https://www.rivercog.org
Health USDHHS (2012) https://maps3.arcgisonline.com/ArcGIS/rest/services/A-

6/HHS_IOM_Health_Resources/MapServer/
Land use and zoning RiverCOG (2017) https://www.rivercog.org
Military MAGIC (2010) https://magic.lib.uconn.edu/connecticut_data.html
Railroads DEEP (2005) https://www.ct.gov/deep
Routes DEEP (2006) https://www.ct.gov/deep
Schools RiverCOG (2017) https://www.rivercog.org
Town halls RiverCOG (2017) https://www.rivercog.org

Note. DEEP = Connecticut Department of Energy and Environmental Protection; NBI = National Bridge Inventory;
FHWA = Federal Highway Administration; EOC = Emergency Operations Center; RiverCOG = The Lower Connecticut
River Valley Council of Governments; USDHHS = U.S. Department of Health and Human Services; MAGIC = University
of Connecticut Libraries’ Map and Geographic Information Center.
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of the materials deposited from previous flood events are still
present, whereas these same materials have likely been removed
within the more urban Middletown area as development has
occurred. To get an idea of additional impacts or sensitivity of
urbanization on the contribution of each flood risk factor,
Figure 5b shows a plot of the percent change in the contribution
of each flood risk factor between the urban and rural subregions.
Two flood risk factors stand out as having the largest impact: ele-
vation (already discussed) and land cover. Assuming that eleva-
tion within the urban subregion has not changed substantially
due to urbanization and that any differences in the contribution
of elevation between the subregions can be attributed to natural
differences in topographic features, Figure 5b shows that recent
changes in land cover have had the most impact on changes in
flooding behavior between the rural and urban subregions.

The results of the logistic regression for the initial set of data points
were then applied to all map grid cells in the LCRVR to produce a flood
susceptibility map for the entire region applicable to the 100-year
flood event (Figure 6a). Flood susceptibility values are plotted as the
percent chance that each 30-m × 30-m grid cell will be inundated
and then classified into five categories according to the color scale
shown in the figure: very low risk (0–20%), low risk (20–40%), medium
risk (40–60%), high risk (60–80%), and very high risk (80–100%). The lar-
gest areas of very high and high risk are located along the Connecticut
River and its major tributaries as well as along the coast. There are also
several isolated areas of high susceptibility associated with smaller
streams and creeks.

Finally, it is observed that when looking at the transitions between the
different subregions, particularly between the coastal and rural subre-
gions, the values are not continuous and there is a slight difference

Figure 5. (a) Average absolute value of the logistic regression coefficients com-
puted for each flood risk factor for the coastal (blue), rural (orange), and urban
(gray) subregions, and (b) the percent difference between the urban (U) and rural
(R) coefficients for each flood risk factor.

Figure 6. Flood susceptibility map for the Lower Connecticut River Valley Region for the Federal Emergency Management
Agency 100-year flood event. Levels represent probabilities of flooding: very low: 0–20%; low: 20–40%; medium: 40–60%;
high: 60–80%; very high: 80–100%. Dashed box (inset) shown in Figure 7. (b) The map showing the spatial extent of the
SFHA is repeated for comparison purposes.
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across the subregion boundary. This difference is a statistical artifact of splitting the region into three subre-
gions and computing different values for the coefficients of each flood risk factor class; for example, the rural
and urban sets of factor coefficients listed in Table 3 were used to separately compute the flood maps for the
rural and coastal zones, respectively. The result is a small discontinuity between the subregions, albeit this dis-
continuity seems to manifest itself more in the lower susceptibility categories as opposed to the areas of very
high susceptibility risk. If the entire LCRVR was analyzed as one subregion, these discontinuities would disap-
pear, but the results would include a substantial bias from the urban subregion in determining flood suscept-
ibility in the coastal subregion, which would likely produce inaccuracies that are much more substantial than
the current discontinuities. The only other way to eliminate these discontinuities would be to use a sufficient
number of subregions so that the discontinuities between each are minimal, which is unrealistic, and the
choice of how subregions were chosen would be difficult to defend.

When comparing the susceptibility map to the map of the FEMA 100-year SFHA (repeated in Figure 6b for
comparisons purposes), it is important to understand key distinctions between the two. The FEMA 100-year
SFHA is limited to the subwatersheds of>2.59k m2. Other limiting issues with the FEMA 100-year SFHA are (1)
the age of the underlying studies (often more than two decades old) and (2) their focus on only areas where
development either already existed or was imminently to be and so was then anticipated. By using the sta-
tistical modeling described herein it was possible to identify the contribution of flood risk factors within the
existing FEMA 100-year SFHA and apply such factors to the entire study region to identify additional areas
outside of the FEMA flood hazard area that are susceptible to inundation by a flood event having a 1% chance
of occurring in any given year. It should be noted that there also were areas (not shown) within the SFHA that
were not identified as very high or high susceptibility in the present analysis because of the fact that values of
the dominant flood risk factors in these locations are different than those identified throughout the remain-
der of the SFHA.

Geographical Information System spatial analyses were made to compare the susceptibility mapping to
FEMA’s SFHA map using the University of Connecticut’s Center for Land, Education, and Research 2010
Land Cover 30-m data set (Center for Land Use Education and Research Land Cover, College of Agriculture
and Natural Resources, University of Connecticut, 2010). Twenty-five percent of the region’s FEMA mapped

Figure 7. Locations of various vulnerable critical infrastructure relative to areas of medium (dark green), high (dark red),
and very high (red) flood susceptibility; map is zoomed in on the city of Middletown, CT, and surrounding area (dashed box
in Figure 6). The 100-year FEMA Special Flood Hazard Area (hatched) is also included for reference and comparison.
USDA = U.S. Department of Agriculture; USGS = U.S. Geological Survey; COG = Council of Governments; FEMA = Federal
Emergency Management Agency; CNES = Centre National d’Etudes Spatiales.
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flood zones are developed, which represents approximately 8% of the overall developed area in the region.
When subtracting waterbodies and wetlands at the areas designated as very high, high, ormedium, an addi-
tional 115 km2 are added to areas identified as susceptible. In the very high and high classified areas only, this
previously unidentified susceptible acreage adds greater than 6% of the region’s nonwater and wetland area
to a flood susceptibility zone, including an additional 8% of the region’s developed area.

One important disclaimer about the flood susceptibility map is that it was created for present-day conditions
and is only to be used for increasing engineering and stakeholder awareness; it is not intended to replace the
FEMA mapping for regulatory or flood insurance decisions. It should also be noted that the scale of the flood
susceptibility map and data are most appropriately used at the regional scale. However, use of the data at the
municipal scale should allow local stakeholders to examine areas of special concern for planning purposes.

3.2. Critical Infrastructure

Data sets for several types of critical infrastructure (listed in Table 4) were obtained and overlaid onto the final
flood susceptibility map for the LCRVR. An area surrounding and including the City of Middletown,
Connecticut, was chosen for further scrutiny because of the presence of a large very high susceptibility zone
(Figure 7). Several dams, bridges, and a large portion of the major routes and railroad in the Middletown vici-
nity are included within the high and very high susceptibility areas of 100-year flood inundation. It is also con-
cluded that there are some areas identified as having medium to very high flood susceptibility to the 100-
year flood that were not included in the FEMA 100-year SFHA. These differences exist primarily in an area
on the west and south sides of Middletown—as can be seen in Figure 7 by the red and dark green shaded
areas that are located outside of the hatched areas. These differences could have a major impact on the per-
ceived vulnerability of critical infrastructure located in these areas.

4. Conclusions

The current study estimated flood susceptibility in the LCRVR attributable to nonclimatic factors using a
method that involved performing a logistic regression for three subregions (urban, rural, and coastal) to
determine the relations between several flood risk factors and flood inundation at the 100-year return period,
which was defined by the FEMA 100-year SFHA, in each subregion. It was found that elevation and distance to
water have the most influence on flood susceptibility in the urban and coastal subregions, while distance to
water and surficial materials have the greatest influence in the rural subregion. It was also determined that
urbanization has had the most influence on the contribution of land cover to 100-year flood susceptibility
when compared to the rural subregion; development within the urban subregion has increased the contribu-
tion of land use by over 200%. The difference in the contribution of elevation to flood susceptibility between
the urban and rural subregions was greater than that for land use, but it is assumed that this is likely not
because of urbanization but rather attributable to natural differences in topographic features between the
two subregions. Because there is still sufficient room for continued growth and development within the
urban subregion, future significant increases in the effects of changing land cover on flood susceptibility in
the area are possible.

The logistic regression equation was then used to create an overall flood susceptibility map for each subre-
gion of the LCRVR onto which various types of critical infrastructure and regional existing land use and zoning
data were overlaid. Differences between the 100-year susceptibility map developed here and the FEMA 100-
year SFHA were observed. Most importantly, developed residential and commercial areas within the region
fall within the medium to very high flood susceptibility (hot spot) areas beyond what is designated as the
FEMA 100-year SFHA. Although the regional data is not at a scale large enough for local determinations, these
hot spot areas warrant further consideration for future localized flood susceptibility mapping if future suita-
ble data sets become available and further consideration at the municipal planning level.

One important disclaimer about the flood susceptibility map is that it was created for present-day conditions
and is only to be used for planning purposes. There are several prominent factors that could affect the future
flood susceptibility map: changes in impervious area (through urbanization), a higher sea level (for coastal
areas), and changes in climatic factors (e.g., heavier precipitation). A future flood susceptibility map can be
created by studying how each of these types of factors are expected to change. However, it is expected that
the present-day flood susceptibility map provides an excellent relative foundation from which to consider
future changes.
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